ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Комплексы аппаратно-программные «АвтоУраган-ВСМ2-М»

Назначение средства измерений

Комплексы аппаратно-программные «Авто Ураган-ВСМ2-М» (далее - комплексы) предназначены для измерений скорости движения транспортных средств (ТС) по видеокадрам в зоне контроля и скорости движения ТС на контролируемом участке, измерений значений текущего времени, синхронизированных с национальной шкалой времени Российской Федерации UTC(SU), измерений текущих навигационных параметров и определения на их основе координат комплексов.

Описание средства измерений

Принцип действия комплексов при измерении скорости движения TC по видеокадрам в зоне контроля основан на измерении скорости косвенным методом – измеряется расстояние, пройденное TC в зоне контроля видеодатчика от точки первой фиксации до точки последней фиксации, а также измеряется интервал времени между моментами первой и последней фиксации TC в зоне контроля.

Принцип действия комплексов при измерении скорости движения TC на контролируемом участке основан на измерении скорости косвенным методом – измеряется расстояние, пройденное TC от точки фиксации в зоне контроля на въезде до точки фиксации в зоне контроля на выезде с участка, а также измеряется интервал времени между моментами фиксации TC в зоне контроля на въезде и в зоне контроля на выезде с контролируемого участка.

Принцип действия комплексов в части измерения значений текущего времени и координат основан на параллельном приеме и обработке сигналов навигационных космических аппаратов космических навигационных систем ГЛОНАСС/GPS с помощью приемника, входящего в состав комплекса, автоматической синхронизации шкалы времени комплекса с национальной шкалой времени Российской Федерации UTC(SU), и записи текущего момента времени и координат в сохраняемые фото- и видеокадры, формируемые комплексом.

Комплексы конструктивно состоят из одного или нескольких видеодатчиков (в состав каждого видеодатчика входит видеокамера, имеющая стабилизированную частоту следования кадров), компьютерного блока, приемника навигационных сигналов глобальных навигационных спутниковых систем и программного обеспечения (ПО) «АвтоУраган®», а также вспомогательных внешних устройств: ИК-прожектора, обзорных видеокамер, контроллера светофора, которые не являются метрологически значимыми частями комплексов.

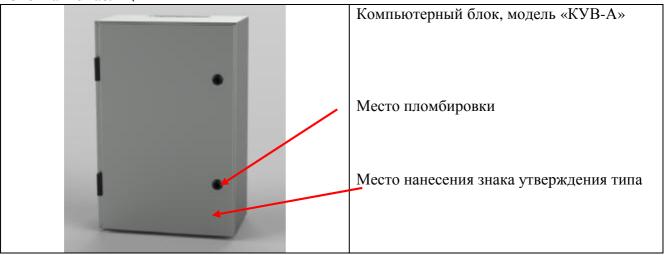
Видеодатчики изготавливаются двух моделей: RNC и RN. Видеодатчик модели RNC совмещен в едином корпусе с компьютерным блоком, поэтому для него отдельный компьютерный блок не требуется. Видеодатчик модели RNC производится только в нормальном исполнении, видеодатчик модели RN производится в нормальном и полярном исполнении (Нормальное и полярное исполнение отличаются только температурным режимом).

Компьютерные блоки изготавливаются двух моделей: «SP-V2» и «КУВ-А». Компьютерные блоки модели «КУВ-А» имеют класс защиты IP66, компьютерные блоки модели «SP-V2» имеют класс защиты IP21 и не предназначены для использования вне помещений.

Навигационный приемник представляет собой ГЛОНАСС/GPS-приемник утвержденного типа (рег. номер 52614-13 в Федеральном информационном фонде). Навигационный приемник, в зависимости от конструктивного исполнения, может размещаться как внутри компьютерного блока, так и как внешнее отдельное устройство.

Конструкция комплексов предусматривает установку видеодатчиков на несущих придорожных конструкциях. Компьютерный блок, в зависимости от модели, устанавливается либо на открытом воздухе (в пыле-влагозащищенном исполнении), либо в отдельном климатическом шкафу или отдельном помещении. При этом каждый видеодатчик формирует видеоизображение с фиксированного участка дорожного полотна («зона контроля»). Геометрические параметры взаимного расположения в пространстве каждого видеодатчика и его «зоны контроля» определяются после установки комплекса на месте эксплуатации и его первичной поверки.

Если в зоне контроля видеодатчика одновременно находится несколько TC, значение скорости определяется независимо для каждого TC по привязке к его государственному регистрационному знаку (ГРЗ). Конструкция, исполнение и принцип действия комплексов гарантируют однозначную принадлежность представленному в кадре TC измеренного и зафиксированного значения скорости. Комплексы обеспечивают измерение скорости движения TC, движущихся в зоне контроля видеодатчика в направлении как приближения, так и удаления от видеодатчика.


Режим работы комплексов круглосуточный.

Общий вид составных частей комплексов с указанием мест пломбировки от несанкционированного доступа, пломбировки крепления комплексов и мест нанесения знака утверждения типа представлены в таблице 1.

Таблица 1 — Общий вид составных частей комплексов с указанием мест пломбировки от несанкционированного доступа, пломбировки крепления комплексов и мест нанесения знака утверждения типа

Окончание таблицы 1

Комплексы изготавливаются в 16 модификациях, отличающихся используемыми моделями компьютерных блоков и видеодатчиков, видом климатического исполнения, типом электропитания, наличием возможности измерения скорости на контролируемом участке. Перечень модификаций комплексов и их описание представлены в таблице 2.

Таблица 2 – Перечень модификаций комплексов

	Обозначение		
$N_{\underline{0}}$	модификации	Описание модификации	
		3 измерительных канала, компьютерный блок «КУВ-А», видеодатчик	
1	03.K1.RN.N.0	«RN», нормальное исполнение, АС 220 В, 50 Гц	
		3 измерительных канала, компьютерный блок «КУВ-А», видеодатчик	
2	03.K1.RN.N.1	«RN», нормальное исполнение, DC 12 B	
		3 измерительных канала, компьютерный блок «SP-V2», видеодатчик	
3	03.K2.RN.N.0	«RN», нормальное исполнение, АС 220 В, 50 Гц	
		3 измерительных канала, компьютерный блок «SP-V2», видеодатчик	
4	03.K2.RN.N.1	«RN», нормальное исполнение, DC 12 В	
		3 измерительных канала, компьютерный блок «SP-V2», видеодатчик	
5	03.K2.RN.P.0	«RN», полярное исполнение, АС 220 В, 50 Гц	
		3 измерительных канала, компьютерный блок «SP-V2», видеодатчик	
6	03.K2.RN.P.1	«RN», полярное исполнение, DC 12 B	
		3 измерительных канала, компьютерный блок, комбинированный в	
		едином корпусе с видеодатчиком модели «RNC», нормальное	
7	03.K3.RNC.N.0	исполнение, АС 220 В, 50 Гц	
		3 измерительных канала, компьютерный блок, комбинированный в	
		едином корпусе с видеодатчиком модели «RNC», нормальное	
8	03.K3.RNC.N.1	исполнение, DC 12 B	
		4 измерительных канала, два компьютерных блока «КУВ-А», два	
9	04.K1.RN.N.0	видеодатчика «RN», нормальное исполнение, АС 220 В, 50 Гц	
		4 измерительных канала, два компьютерных блока «КУВ-А», два	
10	04.K1.RN.N.1	видеодатчика «RN», нормальное исполнение, DC 12 В	
		4 измерительных канала, два компьютерных блока «SP-V2», два	
11	04.K2.RN.N.0	видеодатчика «RN», нормальное исполнение, АС 220 В, 50 Гц	
		4 измерительных канала, два компьютерных блока «SP-V2», два	
12	04.K2.RN.N.1	видеодатчика «RN», нормальное исполнение, DC 12 B	

Окончание таблицы 2

		4 измерительных канала, два компьютерных блока «SP-V2», два
13	04.K2.RN.P.0	видеодатчика «RN», полярное исполнение, АС 220 В, 50 Гц
		4 измерительных канала, два компьютерных блока «SP-V2», два
14	04.K2.RN.P.1	видеодатчика «RN», полярное исполнение, DC 12 В
		4 измерительных канала, два компьютерных блока, комбинированных
		в едином корпусе с видеодатчиком модели «RNC», нормальное
15	04.K3.RNC.N.0	исполнение, АС 220 В, 50 Гц
		4 измерительных канала, два компьютерных блока, комбинированных
		в едином корпусе с видеодатчиком модели «RNC», нормальное
16	04.K3.RNC.N.1	исполнение, DC 12 B

Правило обозначения модификаций комплексов представлено на рисунке 1.

Рисунок 1 – Правило обозначения модификаций комплексов

Описание параметров модификаций комплексов представлено в таблице 3.

Таблица 3 - Описание параметров модификаций комплексов

№ Поз.	Наименование	Значение
1	Измерительные каналы	03 - 3 измерительных канала (Измерение текущего времени и координат, измерение скорости движения транспортных средств в зоне контроля видеодатчика комплекса) 04 - 4 измерительных канала (Измерение текущего времени и координат, измерение скорости движения транспортных средств в зоне контроля видеодатчика комплекса, измерение скорости движения транспортных средств на протяженном участке между двумя видеодатчиками комплекса)
2	Тип компьютера	 К1 – компьютерный блок модели «КУВ-А» К2 – компьютерный блок модели «SP-V2 К3 – компьютерный блок, комбинированный в едином корпусе с видеодатчиком модели RNC
3	3 Модель RNC – модель с компьютерным блоком в едином RN – модель без вычислительного блока	
$V_{\rm A}=0$ Тип $V_{\rm A}=0$ N — от -50 до +60 °C (нормальное исполнение) $V_{\rm A}=0$ исполнения $V_{\rm A}=0$ Р — от -60 до +60 °C (полярное исполнение)		N- от -50 до +60 °C (нормальное исполнение) $P-$ от -60 до +60 °C (полярное исполнение)
5	Тип электропитания	0 – AC 220 B, 50 Γц 1 – DC 12 B

В связи с тем, что комплекс конструктивно состоит из нескольких метрологически значимых частей (комплектующих), заводской номер комплекса указывается в только формуляре на комплекс. Также в формуляре указываются модели и заводские номера всех комплектующих из комплекта поставки. Пример маркировки комплекса приведен на рисунке 2.

Рисунок 2 – Пример маркировки комплекса

Программное обеспечение

Метрологически значимая часть программного обеспечения (ПО) «АвтоУраган®» комплексов состоит их четырех специальных программных модулей, установленных на компьютерном блоке в зависимости от комплектации комплексов:

- модуль «Измерение скорости по видеокадрам» обеспечивает измерение скорости движения ТС в зоне контроля видеодатчика комплекса;
- модуль «Измерение скорости между рубежами» обеспечивает измерение скорости движения ТС на контролируемом участке;
- модуль «Измерение значений текущего времени» обеспечивает определение текущего времени, синхронизированного с национальной шкалой времени Российской Федерации UTC(SU), а также расчет интервалов времени;
- модуль «Измерение значений координат» обеспечивает определение значений текущих координат комплексов.

Уровень защиты ПО «высокий» в соответствии с Р 50.2.077-2014.

Таблица 4 – Идентификационные данные метрологически значимой части ПО

Идентификационные данные (признаки)	Значение			
Идентификационное наименование ПО	Модуль «Измерение значений текущего времени»	Модуль «Измерение скорости по видеокадрам»	Модуль «Измерение скорости между рубежами»	Модуль «Измерение значений координат»
Номер версии (идентификационный номер) ПО	не ниже 1.5	не ниже 4.3	не ниже 1.0	не ниже 1.2
Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	-	-	-	-

Метрологические и технические характеристики

Таблица 5 – Метрологические характеристики

Наименование характеристики	Значение
Пределы допускаемой абсолютной погрешности синхронизации внутренней	
шкалы времени комплекса к шкале времени UTC(SU), мс	
- для модификаций с индексом «03»	±1000
- для модификаций с индексом «04»	±1
Границы допускаемой погрешности (по уровню вероятности 0,95 и	
геометрическом факторе PDOP ≤ 3) определения координат в плане, м	±5
Диапазон измерений скорости движения ТС, км/ч:	
- при измерении по видеокадрам в зоне контроля	от 0 до 350
- при измерении на контролируемом участке	от 0 до 350
Пределы допускаемой абсолютной погрешности измерения скорости	
транспортных средств, км/ч:	
- при измерении по видеокадрам в зоне контроля	
- в диапазоне от 0 до 100 км/ч включ.	±1
- в диапазоне св. 100 до 255 км/ч включ.	±2
- в диапазоне св. 255 до 350 км/ч включ.	±3
- при измерении на контролируемом участке	
- в диапазоне от 0 до 100 км/ч включ.	±1
 в диапазоне св. 100 до 255 км/ч включ. 	±2
- в диапазоне св. 255 до 350 км/ч включ.	±3

Таблица 6 – Основные технические характеристики

Наименование характеристики	Значение
Минимальная протяженность контролируемого участка, м	100
Параметры зоны контроля*:	
- протяженность, м	от 6 до 50
- ширина, м	от 7 до 56
Напряжение электропитания комплекса от сети переменного тока частотой	
50±1 Γι, B	от 187 до 268
Габаритные размеры, мм, не более:	
а) видеодатчик, модель RN	
- длина	600
- ширина	185
- высота	250
б) видеодатчик, модель RNC	
- длина	600
- ширина	185
- высота	270
в) компьютерный блок, модель «SP-V2»	
- длина	260
- ширина	175
- высота	80
г) компьютерный блок, модель «КУВ-А»	
- длина	600
- ширина	400
- высота	250

Окончание таблицы 6

Наименование характеристики	Значение
Масса, кг, не более:	
- видеодатчик, модель RN	6,5
- видеодатчик, модель RNC	8,0
- компьютерный блок, модель «SP-V2»	4,0
- компьютерный блок, модель «КУВ-А»	40
Потребляемая мощность, В-А, не более:	
- видеодатчик, модель RN	125
- видеодатчик, модель RNC	200
- компьютерный блок, модель «SP-V2»	75
- компьютерный блок, модель «КУВ-А»	300
Рабочие условия эксплуатации:	
температура окружающего воздуха	
- в нормальном исполнении, °С	от -50 до +60
- в полярном исполнении, °С	от -60 до +60
атмосферное давление, кПа	от 60 до 106,7
относительная влажность при температуре окружающего воздуха +25 °C, %	до 98
* зависит от модели используемого видеодатчика.	

Знак утверждения типа

наносится типографским способом на титульные листы эксплуатационной документации и на этикетку на корпусе компьютерного блока (для комплекса с видеодатчиком модели RNC – этикетка наносится на корпус видеодатчика).

Комплектность средства измерений

Таблица 7 – Комплектность комплексов

Наименование	Количество		
	для модификаций	для модификаций	
	«03»	«04»	
Комплекс «АвтоУраган-ВСМ2-М» в составе:			
- видеодатчик	от 1 до 4	2	
- компьютерный блок	1*	2*	
- системное ПО «MS Windows®»	1	2	
- приемник навигационный ГЛОНАСС/GPS	1	2	
- ПО «АвтоУраган®», в составе модулей:			
- «Измерение значений текущего времени»	1	2	
- «Измерение скорости по видеокадрам»	по заказу	по заказу	
- «Измерение скорости между рубежами»	-	2	
- «Измерение значений координат»	по заказу	по заказу	
Вспомогательное оборудование:			
- ИК-прожектор	по заказу	по заказу	
- видеодатчик обзорный	по заказу	по заказу	
- контроллер (для подключение светофора)	по заказу	по заказу	
- ПО «АвтоУраган®», в составе модулей для			
фиксации нарушений ПДД	по заказу	по заказу	
Руководство по эксплуатации РСАВ.402100.022 РЭ	в эл. виде	в эл. виде	
Формуляр РСАВ.402100.022 ФО	1экз.	1экз.	
Методика поверки 651-18-072 МП	1экз.	1экз.	

Поверка

осуществляется по документу 651-18-072 МП «Комплексы аппаратно-программные «АвтоУраган-ВСМ2-М». Методика поверки», утвержденному ФГУП «ВНИИФТРИ» 30 января 2019 г.

Основные средства поверки:

- измеритель скорости и длины лазерный ИСД-5, регистрационный номер 58460-14 в Федеральном информационном фонде;
- дальномер лазерный LEICA DISTO D510, регистрационный номер 53755-13 в Федеральном информационном фонде;
- частотомер электронно-счетный вычислительный ЧЗ-81, регистрационный номер 27323-04 в Федеральном информационном фонде;
- источник первичный точного времени УКУС-ПИ 02ДМ, регистрационный номер 60738-15 в Федеральном информационном фонде;
- аппаратура навигационно-временная потребителей глобальных навигационных спутниковых систем ГЛОНАСС/GPS/GALILEO/SBAS NV08C-MCM, NV08C-CSM и NV08C-CSM-DR, регистрационный номер 52614-13 в Федеральном информационном фонде;
- GNSS-приемники спутниковые геодезические многочастотные SIGMA, регистрационный номер 40862-09 в Федеральном информационном фонде.

Допускается применение других средств поверки, обеспечивающих определение метрологических характеристик поверяемых комплексов с требуемой точностью.

Знак поверки наносится в свидетельство о поверке в виде оттиска поверительного клейма или наклейки.

Сведения о методиках (методах) измерений

приведены в эксплуатационной документации

Нормативные и технические документы, устанавливающие требования к комплексам аппаратно-программным «АвтоУраган-ВСМ2-М»

Приказ Росстандарта № 1621 от 31.07.2018 «Об утверждении государственной поверочной схемы для средств измерений времени и частоты»

Комплексы аппаратно-программные «АвтоУраган-ВСМ2-М». Технические условия. ТУ 4278-022-95195549-2018

Изготовитель

Общество с ограниченной ответственностью «Рекогна-Индастриал» (ООО «Рекогна-Индастриал)

ИНН 7718285556

Адрес: 115230, г. Москва, проезд Хлебозаводский, дом 7, стр. 9, пом. Х, ком.25, оф. 17

Телефон (факс): +7 (495) 104-32-21

E-mail: info@recogna-i.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт физико-технических и радиотехнических измерений»

Адрес: 141570, Московская область, Солнечногорский район, город Солнечногорск, рабочий поселок Менделеево, промзона ФГУП ВНИИФТРИ

Телефон (факс): +7 (495) 526-63-00

Web-сайт: <u>www.vniiftri.ru</u> E-mail: <u>office@vniiftri.ru</u>

Аттестат аккредитации Φ ГУП «ВНИИ Φ ТРИ» по проведению испытаний средств измерений в целях утверждения типа № 30002-13 от 11.05.2018 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

ШОВ
1

М.п. «____ » _____ 2019 г.